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1 

2 This paper presents a probabilistic approach to reconstruct vehicle trajectories from GPS probe 

3 data on arterials. By combining car-following concepts with machine learning algorithms, we 

4 overcome the drawbacks of pure statistical modeling to investigate the question of adequate 

5 probe penetration levels on single-lane roads.  Although the parameters of the traffic state 

6 estimation model are learned from historical data, the proposed algorithm is found to be robust to 

7 unpredictable conditions. The estimation algorithm is tested using a vehicle trajectory dataset 

8 generated using microsimulation software. The results highlight the need to take into account the 

9 randomness of the spatio-temporal coverage associated with probe data for reliable state 

10 estimation algorithms. 

11  
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1 INTRODUCTION 

2 As connected and autonomous vehicles begin to penetrate vehicle fleets throughout the world, 

3 probe vehicles become a valuable source of real-time traffic information. Probe vehicles act as 

4 mobile data sensors by continuously broadcasting their position and speed in real-time, providing 

5 Lagrangian data measurements. Fused with stationary sensing data obtained from traditional 

6 monitoring devices such as inductive-loop detectors, comprehensive datasets are obtained for 

7 traffic monitoring and state estimation (1, 2, 3). In urban road networks, where the deployment of 

8 stationary detectors is usually limited and traffic lights govern the link dynamics, a higher 

9 number of probes may be necessary to accurately characterize traffic conditions. Motivated by 

10 the wide spatio-temporal coverage offered by fused traffic data, we address the adequate levels 

11 of probe penetration at a microscopic scale in this paper, focusing on the reconstruction of 

12 vehicle trajectories over a single arterial roadway. 

13 A number of modeling techniques have been proposed in the recent years, to estimate 

14 traffic flows, densities (4), speeds (5), travel times (6), and travel time distributions (7,8) from 

15 vehicular sensor data. These techniques have been formulated either using traffic flow theory in 

16 a model-driven approach (9,10,11) or historical traffic patterns in a data-driven approach (12). 

17 To account for the variability of arterial traffic, a statistical approach using Coupled Hidden 

18 Markov Models was proposed by Herring et al. (13) to estimate the traffic state from sparse 

19 probe data. The limitations of purely statistical approaches were overcome by Hofleitner et al. 

20 (14), where a hybrid modeling framework combining machine learning with the hydrodynamic 

21 traffic flow theory was proposed, to predict arterial travel times from streaming GPS probe data. 

22 On the other hand, Papathanasopoulou and Antoniou (15), proposed a data-driven car-following 

23 model to capture longitudinal interaction among vehicles. We propose a probabilistic approach 

24 for the spatio-temporal reconstruction of the traffic state from sparse probe data, wherein the 

25 traffic patterns are learned from historical data using Conditional Random Fields (CRFs). By 

26 modeling the vehicle interaction potential to reflect the local traffic information (such as 

27 spacing), our estimation models seamlessly combine the heuristic car-following model theory 

28 (16) with statistical patterns to capture the microscopic traffic dynamics.  

29 Research in the field of traffic state estimation from probe data has been focused on 

30 network modeling and the reconstruction of traffic states on missing road links (17). At a finer 

31 scale, Herrera and Bayen (9) reconstructed the traffic density on a freeway section by modifying 

32 the LWR PDE with a correction term to nudge the model estimate towards the GPS probe 

33 measurements. The techniques proposed did not require the knowledge of on and off-ramp 

34 detector counts for the density estimation. The tradeoff between probe vehicle and inductive loop 

35 velocity data was studied by Mazaré et al. (18) (with the goal of predicting travel times on a 

36 roadway stretch), who acknowledged the inherent difficulty of specifying, a priori, the probe 

37 penetration rates which are dictated by the total traffic flow. Moreover, if the probe sampling 

38 requirements are not adequately met due to technical or privacy issues, the observed probe data 

39 may be sparse and non-uniformly distributed. Taking into account this randomness of the 

40 spatio-temporal coverage of probe vehicles, we investigate the following question in this paper: 

41 ‘What is the lowest probe penetration rate by which we can reliably capture the traffic dynamics 

42 on a single-lane road link?’.  

43 The remainder of the paper is organized as follows: in Section 2, we introduce 

44 car-following rules that provide the framework for the graphical modeling approach to vehicle 

 

trajectory estimation. In this section, the CRF model that predicts the traffic state on a single-lane 45 

road from probe vehicle data is described, and validated by testing the model capability to 46 

identify unforseen incidents. Having validated the model, in Section 3 we implement the 47 
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1 Markovian approach for trajectory reconstruction and analyse the impact of the probe vehicle 

2 distribution on the estimation. The conclusions and future scope of the work are presented in 

3 Section 4. 

4   

5 PROBABILISTIC MODELING FRAMEWORK 

6 The spatio-temporal reconstruction of all vehicle trajectories on a single-lane road link is 

7 formulated as a discrete Markov process, modeling the microscopic traffic dynamics using 

8 Cellular Automata (CA); see (19). CA models are discrete mathematical models of the 

9 microscopic dynamics, where vehicle movement is governed by an interaction potential that 

10 describes the (“energy profile of”) local traffic conditions. These models have been employed for 

11 to study interesting traffic phenomena like ’synchronized’ traffic at ramps and ’stop-and-go’ 

12 regimes (20). Given the initial and boundary conditions, CA models update the traffic state in 

13 discrete time-steps, based on the past state through the potential function. The aim of this study is 

14 to exploit the information provided by the probe vehicles, by capturing the spatial dependencies 

15 between successive vehicles through a CRF model, which is based on the assumption that the 

16 speed of any vehicle α is influenced by its leader. Using appropriate probabilistic inference 

17 methods (21,22), and modeling the non-probe (or non-instrumented) vehicles as ‘hidden’, the 

18 CRF model predicts the velocity field at every discrete time step. Thus, the traffic state update is 

19 carried out sequentially, by augmenting the past (temporal) information (provided by the 

20 previously estimated traffic state) with the spatial dependencies (provided by probe vehicle 

21 information) in the current time step. 

22  

23 CA Model for Traffic State Update  

24 A single-lane roadway is modeled as a one-dimensional uniform lattice 𝐿. The spatial 

25 coordinates of each vehicle 𝛼 on the roadway is discretized such that each cell can be occupied 

26 by at most one vehicle, which is achieved by setting the cell length to an appropriate value, e.g., 

27 7.5 m (23). The state of each occupied cell at a discrete time 𝑘 is completely specified by the 

28 discretized velocity 𝑣!! , which can take integer values between 1 and 𝑣!"#, where 𝑣!"# is the 

29 maximum number of cells that can be crossed in one time-step. Thus, an order parameter 

30 𝜎
!
𝑙 ∈    0, 1, 2, . . . , 𝑣 𝑙!"#  can be defined for each cell    ∈ 𝐿 at time 𝑘, where 0 represents free 

31 cells. The traffic state update is traced in discrete time steps to determine the 𝜎!!! 𝑙  according 

32 to the update rules in Algorithm 1 below. The vehicle-interaction potential is modeled to capture 

33 response of a driver as a function of speed and spacing to the (lead) vehicle ahead. Hence, the 

34 state (velocity) of the vehicle 𝛼 at time-step 𝑘 + 1  is a function of the gap 𝑔!!  to the lead vehicle, 

35 the vehicle speed 𝑣! !
𝑣 𝑘!  and the speed of the leader !!! in the previous time-step, . 

36  

37 Graphical Modeling Approach  

38 Let 𝑋 =    𝑋   ! |𝑠 ∈ 𝑁  be a discrete valued random field with probability mass function (pmf), 

39 𝑝(𝑥) defined on 𝑁 random variables. 𝑋 is defined as a Markov Random Field (MRF) if it 

40 satisfies the Markovian property that, for all 𝑠 ∈ 𝑁, 

𝑃 𝑋 =   𝑥 𝑋 𝑡 ≠ 𝑠 = 𝑃 𝑋 =   𝑥 𝑋

 

 ! ! ! , ) ! ! !!
),      (1)  41 

where 𝑁! denotes the neighbours of 𝑠. These (conditional) independence assumptions between 42 

the variables 𝑋! can be encoded by a graph 𝐺 =    (𝑉,𝐸) where 𝑋 is indexed by the vertices 𝑉  43 

such that 𝑋 = (𝑋!)!∈! and edges 𝐸 ∈ 𝑉×𝑉. Defining the vehicles on the roadway at any given 44 

time as 𝑉 and encoding the spatial dependencies in the velocity through edges 𝐸 (represented by 45 

the bold lines in Figure 1) between successive vehicles, the condition in Equation 1 implies that 46 
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1 ALGORITHM 1 Car-following rules for CA model 

Input  

Length of road (cells) - 𝑁,   Total simulation time - 𝑇, time step  𝜕𝑘,  

Discretized velocity 𝑣 ∈    1! , . . , 𝑣!"# ,  

Interaction potential parameters, 𝝀 = [𝜆 𝑲!, . . , 𝜆 𝜆! , . . 𝑲], =    1, . . . , 𝑣!"#  

Initialize  

Initial traffic state 𝜎!(𝑙), Arrival density - 𝑝!, Probability of Slow-down - 𝑝! 

Define    

𝜓!!!
  ≡   Ρ  (𝑣!!! =   𝑣 ) as the probability of assuming velocity state 𝑣  in time 𝑘 + 1! ! ! !  

Iterate   

Compute for each 𝛼, car-following input set}, 𝒀 = 𝑣
! !
  𝑣

!
! !!! 𝑔!

   Velocity Update 

   (Unnormalized) probability, 𝜓!!!
= 𝑒

𝒀∙!!
!

   Sample !!!according to normalized potential, 𝜓!!!
𝑣! !  

   𝑢!  ~ Uniform(0,1) 

   IF 𝑢!  < 𝑝! 

        𝑣!!! =   𝑣!!! − 1! !

   END IF 

   Position Update 

   Compute vehicle positions 𝑠!!!!  in succession, moving in the upstream direction 

   !
𝑠
!!! !!

= min   max 𝑠
!
! , 𝑠

!
+ 𝑣

!!!
1! , 𝑠! ( −! !!! )       Ensures forward movement without         

overtaking 

   Traffic State Update 

   𝜎!!! 𝑠!!! = 𝑣
!!!

! !

   Boundary Conditions  

   𝑢!  ~ Uniform(0,1) 

   IF 𝑢!  < 𝑝! 

        𝜎!!!(1) =   𝑣! New vehicle enters with random velocity 𝑣! 

   END IF 

2 

3 

4 the velocity of any vehicle is independent of the traffic state 𝜎 𝑙  given the local velocity field. 

5 We employ a first order Markov model with the assumption that a vehicle response is influenced 

6 by only the leader vehicle. The MRF model with a chain-like structure, employed to predict the 

7 velocity field at time 𝑘 + 1  given the probe vehicle velocities, is depicted in Figure 1. The 

8 dependence of the traffic state on the past can be modeled in two ways (a) through directed 

9 temporal edges between 𝜎!and 𝜎!!! or (b) by setting 𝑌 = 𝑓(𝜎!!!) as an input feature and 

10 conditioning the MRF on 𝑌. Adding temporal edges results in a loopy Markov network with 

11 directed and undirected edges, increasing the model complexity. On the other hand, the second 

12 approach extends the (unconditional) MRF model to a linear-chain CRF model (24), by 

13 conditioning the vehicle-interaction potential on an input feature space. By suitably defining the 

14 feature set 𝑌, the CRF model has the flexibility to capture the response of a vehicle to its local 

15 traffic conditions, as in the CA model. Formally in the CRF model the temporal dynamics are 

16 captured by the node (association) potential, Ψ!, representing the probability of each node (or 

17 vehicle) assuming a particular state, and Ψ!" is the interaction (or edge) potential that represents 

18 the dependencies between neighboring vehicles. Defining single and pairwise cliques (subset of 
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𝑉 that are mutually adjacent) over the node and edges respectively, the conditional PMF over the 1 

chain-graph 𝐺 is 2 

𝑝 𝒙 𝒚 =
!

!(𝒚,!)
𝑒

!! !!,𝒚,!!∈! ! !!" !!,!!,!!,!!∈!!!∈! , (2) 3 

where Θ is a parameter vector and 𝑍 is a normalization term. 4 

5 

6 
7 

8 

9 

10 

11 

Formulation of Potentials 12 

The spatio-temporal evolution of the velocity field is carried out sequentially by the CRF model 13 

in discrete time-steps. This is achieved by formulating the potential (node and interaction) 14 

functions at each time step 𝑘 + 1, given the temporal information in 𝑘 and the spatial 15 

information from the probes in 𝑘 + 1  (Figure 2). As observed in Figure 1, the spatial 16 

dependencies between adjacent vehicles is encoded by an edge, implying that all successive 17 

vehicles are neighbours irrespective of the spacing between them. By modeling the spatial 18 

correlation in the speeds between two neighbouring nodes (vehicles) as a function of the gap 19 

between them (in the previous time), we can ensure that vehicles that are sufficiently separated 20 

will behave as free-flowing traffic. This is achieved by defining the edge feature 𝒀! =

FIGURE 1 Markov Chain for Traffic State Update (The filled (grey) circles are random 

variables corresponding to the probe vehicles 𝑋!  while the clear circles represent the hidden 

variables) 

𝑔!
! , 𝑣!

!21 

where 𝑣!
!
= |𝑣!!!

!
− 𝑣!

!| is the absolute speed difference. For instance, assume that the velocity 22 

field is discretized into 3 states, i.e 𝑣! ∈ 1, 2, 3 . The edge potential is modeled as 23 

Ψ!,!!!
!!!

=

𝑒
𝒀
!
∙𝜽!,!
!

𝑒
𝒀
!
∙𝜽!,!
!

𝑒
𝒀
!
∙𝜽!,!
!

𝑒
𝒀
!
∙𝜽!,!
!

𝑒
𝒀
!
∙𝜽!,!
!

𝑒
𝒀
!
∙𝜽!,!
!

𝑒
𝒀
!
∙𝜽!,!
!

𝑒
𝒀
!
∙𝜽!,!
!

𝑒
𝒀
!
∙𝜽!,!
!

, (3) 24 

where 𝜽!,!
!  is the edge parameter set defining the spatial correlation between the speed states of 25 

𝑣!! = 𝑖 and 𝑣!! = 𝑗. The potential function in Equation 3 is reminiscent of the Potts model (25) 26 

with expressive potentials, i.e. states are not interchangeable. In other words, CRF model is 27 

trained to learn that the response of a fast-moving vehicle to a slow leader (as a function of their 28 

spacing) will not be the same as that of a slow vehicle to fast leader. 29 

30 

To capture the temporal dependencies of 𝑣!
!!!  (as in the CA model), the feature set for the node 31 

potential is set to 𝒀! = 𝑔!
! , 𝑣!

! , 𝑣!!!
! . Now the node potential Ψ!

!!! can be expressed as 32 

Ψ!
!!!

= 𝑒
𝒀
!
∙𝜽!
!

𝑒
𝒀
!
∙𝜽!
!

𝑒
𝒀
!
∙𝜽!
! , (4) 33 

where 𝜽!
!
= 𝜃

!

!!!
  𝜃
!

!!!
  𝜃
!

!!!
 are the node parameters (for node 𝛼 at 𝑘 + 1) corresponding to 34 

the 𝑓 (node) features and 𝑖 states. For both the node and edge potential, we include a feature that 35 

σ1

σ0 2 2 2 1 1 3 3

2 1 3
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is always set to 1, introducing an intercept term to account for the probability of a vehicle 1 

assuming a particular velocity that is independent of the features. 2 

3 

4 
5 

6 

7 

8 

CRF Model Inference 9 

The CRF model is fully specified by its potential functions and the corresponding parameter 10 

vector Θ. Before carrying out the probabilistic inference of the hidden states, the CRF model is 11 

trained by estimating the parameters according to labeled data pairs 𝒟 =

FIGURE 2 CRF Model (The circles represent the nodes, the blue rectangles (above) represent 

the node features for the hidden nodes and the red rectangles (below) represent the edge features) 

𝒚!,𝒙! !!!

!  such that 12 

the loglikelihood log𝑝 𝒙 𝒚!

!!!  is maximized. Since the objective function is convex, any 13 

gradient-based optimization approach can be adopted for the maximum likelihood estimation of 14 

the parameters. Once trained, the models can be applied for two kinds of probabilistic inference 15 

problems; see (21) for details. Given a subset of known variables 𝒙! (i.e probe vehicle velocity),16 

infer (a) the marginal probabilities of the unknown variables 𝒙! using the sum-product algorithm17 

and (b) the most likely configuration of the states (MAP estimate) obtained by 18 

𝑥
∗
= argmax! 𝑃 𝒙 𝒚 . (5) 19 

For linear-chain CRFs and Markov chain models, the MAP inference can be efficiently 20 

performed by dynamic programming (the Viterbi algorithm) over the hidden variables 𝒙!.21 

22 

Markov Chain Model for Position Update 23 

In the car-following model (Algorithm 1), the new position of each vehicle 𝑠!
!!!was assumed to 24 

be a function only of 𝑣!
!!!. However, an analysis of the groundtruth simulated to model 25 

real-world conditions (see Section below) indicates otherwise. Hence, to update the position of 26 

the vehicles in space in a more realistic setting, the CRF estimated velocity field is plugged into a 27 

simple Markov chain model (formulated at each time step 𝑘). In this Markov chain, the nodes 28 

represent all the lattice cells, while the state of the nodes denotes the number of cells moved by 29 

the vehicle (if present) in each time-step. Let 𝑐   ∈    −1,0,1, . . , 𝑐!,… ,𝐶  be the set of states where 30 

𝑐 =   −1 implies the absence of a vehicle in the cell and 𝐶 is the maximum number of cells that 31 

can be crossed in one time-step. The value of 𝐶, which is determined by the maximum velocity 32 

and the cell size, defines the (asymmetric) neighbourhood system i.e the number of neighbouring 33 

cells (in the downstream direction) in the Markov chain. As with the speed, setting the features to 34 

𝒀
!
= 𝑔!

! , 𝑣!
! , 𝑣!!!

! , the node potential at time-step 𝑘 + 1 for cell 𝑠 (if a vehicle is present) is 35 

modeled as  36 

v
k
α

v
k
α+1

g
k
α

g
k
α−1 v

d
α−1

g
k
α

v
d
α

v
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α
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1 Ψ
!!!

= 𝑃 𝑐 = 0   . . 𝑃 𝑐 = 𝑐 . . 𝑃 𝑐 = 𝐶! ! ( ) ,   (6) 

2 where the probability of each state 𝑐! is calculated as 

!
3 𝑃 𝑐 = 𝑐 =! !

 . (7) 
!! ! ∙𝒀! !

4 

5 The regression coefficients 𝛽! associated with the state 𝑐! can be estimated using MLE 

6 techniques as in a multi-class logistic regression model. Rather than using a simple logistic 

7 regression model for the position update, we formulate a Markov chain model with exclusion 

8 rules (that discourage overtaking in a single-lane model) as well as to ensure that the position 

9 predicted by the model does not coincide with the (known) position occupied by the probe 

10 vehicle in the next time-step. This is achieved by appropriately modeling the edge potentials. For 

11 instance, assuming that a vehicle can only move 1 cell (or remain in its previous position), the 

12 edge potential between cells s and s + 1 can be set to 

𝑐 = 1 𝑐 = 1 𝑐 = 1!!,!! !!,! !!,!

13 !!!
Ψ = 𝑐 = 1 𝑐 = 1 𝑐 = 1!! !!,!!! , ! ,! !,! , (8) 

𝑐 = 1 𝑐 = 0 𝑐 = 1!,!! !,! !,!

14 where 𝑐 = 0 implies that if the leader vehicle advances 𝑐 = 0!,! !  cells (i.e., it remains in s + 1) 

15 and a follower is present in s, the follower is restricted from moving 𝑐 = 1!  cells. 

16 

17 Model Testing and Validation 

18 In this section, we test the CRF model as well as the car-following logic through a numerical 

19 example. The velocity is discretized into 3 states respresenting freeflow, synchronized 

20 (slow-moving) flow and congested conditions. The traffic state is simulated following the update 

21 rules in Algorithm 1; the parameters 𝝀  are assumed to have been learned from historical 

22 trajectory data. The initial distribution of vehicles i.e. 𝜎!, at time 𝑘 = 0 on the roadway is 

23 assumed to be completely known. At the upstream boundary, loop detectors provide information 

24 about the occupancy and speed of all upstream vehicles, as well as the entry times of new 

25 vehicles into arterial section under consideration. This implies that 𝜎!(1) is known ∀  𝑘. We 

26 simulate the shockwaves generated in undersaturated stop-and-go conditions by appropriately 

27 setting 𝜎!(𝑁) to reflect the red and green signal cycles, i.e., we assume a traffic signal at the 

28 downstream end of the road section. By considering the simulated trajectory as our historical 

29 dataset, the training data pairs !
𝒟 = 𝒚 𝒙!, ! !!!  were extracted for every pair of vehicle and 

30 leader at all times. For any given pair, 𝛼 and 𝛼 + 1,  𝒙 = 𝑣
!!!
!  while 𝒚 is the corresponding set 

31 of feature vector values. 

32 

33 Validation of the CRF Model 

34 In order to validate the model (with out-of-sample data), an incident is assumed to have occurred 

35 at the downstream boundary on the road section of length = 𝑁 cells and 𝑝 = 0.25! . The 

36 simulated traffic state is shown in Figure 3a, which provides ground truth data for comparison 

37 with the traffic state predicted by the CRF model. A subset of all the simulated vehicles are now 

38 chosen randomly to represent the set of probe vehicles. For this study, periodic noise-free 

39 updates of the vehicle position 𝑠! (spatial co-ordinates) and speed 𝑣! (derived from successive 

40 GPS co-ordinates) are assumed to be available from the probe vehicles at intervals of 𝜕𝑘 = 1s. 

41 The CRF model is used to estimate the velocity field sequentially at discrete time-steps 

42 (corresponding to the sampling interval of the probe vehicles), while the position is updated as in 
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Algorithm 1. The complete vehicle trajectories estimated is depicted in Figure 3b, indicating that 

a probe penetration rate of 10% is sufficient to capture the backward propagation of the 

shockwave generated by the incident located downstream. 

1 

2 

3 

(a) Groundtruth

(b) Probe = 10%
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FIGURE 3 Validation of CRF Model: Time-Space Diagram (Velocity) 

Randomness in Probe Coverage 

As the evolution of the traffic flow is not dictated by the probe vehicles, it is nearly infeasible to 

select the subset of probe vehicles to be distributed evenly in time and space (18). We analyze 

the effect of randomly distributed probes on the trajectory reconstruction problem by comparing 

the estimated states for two random distributions of probes with a penetration rate of 5%. Figure 

4 depicts the distribution of the randomly selected probes in the upper half and the corresponding 
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1 

2 

3 

4 

5 

6 

7 

8 

9
10

11
12

13

14

This example asserts that specifying a single probe penetration rate to capture the traffic 15 

dynamics can be quite misleading, when the unpredictiblity of the probe vehicle arrival times 16 

introduces randomness in its spatio-temporal coverage. Hence, the goal of this study can be 17 

stated as: 18 

19 

estimation trajectories in the lower half. The results demonstrate the need to take into 

consideration the spatial distribution of the probes for the trajectory estimation problem. The 

groundtruth was simulated by assuming 3 signal cycles in the time-period of 𝑇 = 900𝑠, with a 

redtime of 100𝑠, (arbitarily) fixed a times 𝑘 = 100,400, 700. While this information can be 

easily inferred from a probe level of 5% in Figure 4a, since none of the selected probes pass 

through the third signal cycle, the estimation algorithm fails to capture the build-up and 

dissipation of the shochwaves in the time period from 700 to 900𝑠 in Figure 4b. 

80

 
 

 
 

FIGURE 4 Randomness in Probe Coverage: Time-Space Diagram (Velocity)  
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1 Given the initial state of all vehicles at time 𝑡!, the boundary conditions 𝜎!(1), and the probe 

2 vehicle states at all time steps 𝑡!, . . , 𝑡! , . . 𝑡!  (where T is a horizon time), determine the smallest 

3 probe penetration rate that can predict the trajectories throughout the time interval [0,𝑇], within 

4 a relative mean error, 𝜀 and with a (specificied) reliability level of 𝑟  %. 

5 

6 

7 EXPERIMENTAL SETUP 

8 In this section, we simulate real-world conditions on a road section using data generated from  

9 microscopic traffic simulation. The simulations are run for 1 hour periods (from 8 am to 9 am) 

10 with a 15-minute warm-up period for an arterial link of about 500m length, with a on-ramp 

11 located at about 300m downstream. The free-flow speed is 60 km/hr and demand was gradually 

12 increased every 15-minute period, from 1200 veh/hr to 2500 veh/hr, to simulate build-up and 

13 dissipation of shockwaves. The continuous trajectory data is discretized by dividing the roadway 

14 into lattice cells of 7.5m (around 22 feet) in length. The speed, calculated as a difference quotient 

15 from the positions, is categorized into the following velocity ranges: < 35 km/hr, 35-50 km/hr, 

16 50-60 km/hr, 60-70 km/hr and >70 km/hr.

17 

18 Results and Analysis  

19 In this study, the performance measure used to investigate probe penetration is the mean absolute 

20 percent error (MAPE) defined as  

! ! ! !

21 ! ! !
𝜀 =!"#$ !!! ,  (9) 

! !!

22  where 𝑛 is the total number of vehicles in the system (at time 𝑇), 𝑇  and 𝑇!   ! are the actual travel 

23 times (computed from the ground-truth) and estimated travel times of the 𝑗!! vehicle, 

24 respectively. The traffic state (velocity) estimated for a time-period of 𝑇 = 15 minutes in 

25 congested conditions is depicted in Figure 5b. A visual comparison with the ground truth in 

26 Figure 5a, as well as the MAPE value of 1.53 % indicates that a probe penetration rate of 30% is 

27 sufficient to capture the shockwaves created by the onramp. It should be noted here that although 

28 no information regarding the entry times of the on-ramp vehicles was provided to our estimation 

29 algorithm, it can be inferred from the output in Figure 5b. Similar estimation studies (26) have 

30 indicated that probe levels of 2% can capture the shockwaves generated by lane-closure on a 

31 freeway. However, on arterial sections where the traffic dynamics is governed by random arrival 

32 of the onramp vehicles, it is not surprising that a higher probe penetration rate is required for 

33 traffic state estimation in congested conditions. Moreover, as indicated by the validation example 

34 in Section 2, when the traffic state is simply in terms of the congested, synchronised and 

35 free-flowing phases (i.e 3 levels of velocity discretization), the probe levels as low as 5% were 

36 sufficient to capture the shockwaves generated by the traffic signals.  
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FIGURE 5 Vehicle Trajectory Estimation 5 

6 

The spatial distribution of the probe vehicles plays a significant role in the accuracy of estimated 

results, as observed earlier. To analyse the effect of the randomness introduced by the probe 

vehicle distribution, we compute the probability distribution of the MAPE by estimating the 

traffic state for R = 100 simulations. For each simulation, most likely configuration is estimated 

using Equation 5, by maximizing the joint probability of the CRF model at each time-step. The 

fitted log-normal distributions obtained for fixed penetration levels of 5%, 10%, 20% and 30% is 

depicted in Figure 6. The mean value of the MAPE for a probe penetration level of 5% is around 

18%, but the high variance indicated by the flattened PDF implies that travel time error can be 

even higher if the probe distribution if highly random. As the number of probe vehicles increases 

this variance reduces, as indicated by the narrower probability distributions. The key observation 

that can made from this analysis is that when the probe level on arterial sections is sparse, it is 

imperative to ensure that probes are as uniformly distributed as possible for a reliable estimation 

of the underlying traffic state. In reality, the variability in the driver response to his local 
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14 

15 

16 

17 
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surroundings cannot be discounted, and the observed traffic state given the past conditions can 1 

deviate from the most likely state predicted by Equation 5. Taking into consideration this 2 

randomness we can sample the non-probe vehicle velocities from the marginal probabilities of 3 

the hidden variables, computed using the sum-product algorithm. The cumulative distribution 4 

function (CDF) of the MAPE is presented in Figure 7. The results imply that when the probe 5 

penetration rate is greater than 20%, the probability of obtaining a MAPE value below 5% is 6 

significantly high, with 𝑟   ≈  90%. 7 

8 

9 
FIGURE 6 PDF of the Mean Absolute Percent Error in travel time at different probe levels 10 

11 
FIGURE 7 CDF of the Mean Absolute Percent Error in travel time at different probe levels 12 

13 

CONCLUSIONS 14 

We present a methodology for traffic state estimation combining car-following theory with 15 

probabilistic graphical models to learn the traffic patterns from historical data. We propose a 16 
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1 CRF mainly to model (a) the dependence of the current traffic state on the past, without 

2 increasing the complexity of the model by additional edges, and (b) the effect of diminishing 

3 influence of the leader vehicle with increasing vehicle spacing. In real-world settings, as the 

4 coverage of the probe vehicle information is expected to be random (as well as sparse) and its 

5 distribution in the traffic stream cannot be specified apriori, it is not sufficient to specify 

6 adequate penetration levels with a single value. To address this randomness, we present a 

7 probabilistic approach to examine the probe penetration rate. Position update was modeled as a 

8 Markov chain, with multi-class logistic regression used to formulate the node potentials. 

9 However, classification accuracy of logistic regression is low, with the probability of incorrectly 

10 estimating the updated vehicle position being around 15%. As the predicted vehicle gap is fed 

11 into the input vector in the next time step, the Markov chain model error propagates with time. 

12 This drawback needs to be addressed with better models of position update.  As future research, 

13 we propose investigating support vector machines for this purpose. The model can also be 

14 extended to multi-lane roads, and the CRF models can be improved by adopting second or higher 

15 order Markov models to capture the influence of vehicles further downstream (ahead of the 

16 leader), which could improve the estimation accuracy. 
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